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In the present paper an attempt is made to study relationships between
Banach lattices and spaces which have local unconditional structure (l.u.st.).
(Relevant definitions appear below.) In the case where the Banach lattice
is LP(fL) for some measure fL and the space with l.u.st. is an 2 p -space (cf. [20]),
there are known to be good relationships between these structures. We recall
in particular the beautiful result of Lindenstrauss-Pelczynski [20J and
Lindenstrauss-Rosenthal [21J: A Banach space X which is not isomorphic
to a Hilbert space is a 2 p -space if and only if X* * is isomorphic to a comple­
mented subspace of Lp(ft) for some measure fL. This theorem suggests that a
Banach space Xhas l.u.st. if and only if X** is isomorphic to a complemented
subspace of a Banach lattice. The "only if" part of this assertion is proved
in Section 2. Indeed, an easy modification of an argument from [20] yields
that X has l.u.st. iff X is isomorphic to a subspace of a Banach lattice L so
that L is finitely represented in X in a very nice way (in particular, nice
enough to ensure that X** must be complemented in L **). This result also
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allows us to prove the "if" part of the conjecture in some special cases (e.g.,
if X contains locn's uniformly for large I1'S). The general case would follow
from an affirmative answer to:

MAIN CONJECTURE. If X is a complemented subspace of a Banach lattice,
then X has l.u.st.

If the main conjecture is true, then it follows that X has l.u.st. iff X*
has l.U.st. In Section 2 we prove the weaker result that X has l. U.st. iff x**
has l. u.st.

In Section 3 we prove some additional embedding theorems. In particular,
we prove that if X is a subspace of a space which has an unconditional basis
and 11 does not embed into X (respectively, X is reflexive), then X embeds into
a space with shrinking unconditional basis (respectively, reflexive space with
an unconditional basis).

Atomic Banach lattices (i.e., Banach spaces which in the separable case
have an unconditional basis) are the most important Banach lattices from the
point of view of the modern theory of the geometry of Banach spaces. In
Section 4 we investigate the well-known problem whether every Banach
space X has a subspace with an unconditional basis. An affirmative answer
to this question is given in case X is a subspace of a a-complete and a-order
continuous Banach lattice. In view of the embedding theorem of Section 2,
this yields that if X has l.u.st. and X does not contain Inn's uniformly for all 11,

then every subspace of X has an unconditional basic sequence. This result is
improved on in Section 5 for the Lorentz function spaces A( W, p). Here it is
shown that a subspace of A( W, p) (I p < Cf) either embeds isomorphically
into Lp[O, I] or contains a complemented subspace isomorphic to 1.1) •

In general, we follow the notation in [22]. X, Y, Z, etc., represent infinite
dimensional Banach spaces; subspaces are assumed infinite dimensional and
closed. A space X which is a lattice under ""~ is called a Banach lattice provided
[i x II ~ I Y:I whenever I x \ "":; 1Y!, where x == sup(x,-x). A sequence
(en) in X is said to be an unconditional basic sequence provided that there
are biorthogonal functionals (en *) in X* so that L e~*(x) en converges
unconditionally to x for each x in the closed linear span [en] of (en)' In this
case there is a constant K so that 'I L cxnen II ~ K I! L: f3nen [I whenever
I exn I ~ ! f3n I· The smallest such K is denoted by U(erJ and is called the
unconditional constant of (en)' One can introduce an equivalent norm on X
so that U(e,,) == I; this makes [en] into an atomic Banach lattice under
the pointwise ordering on the coefficients of the basis vectors (en)' When
U(en) = 1, the basis (en) is called unconditionally monotone.

A Banach lattice L is: a-complete, provided that if 0 ~ Xl x 2 <: ... x,
then sup X n exists; a-order continuous, provided that if X\ X 2 0
and 0 == inf(x,,), then .1 X n -* O. It is known [24, 26, 30] that X is a-complete
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and a-order continuous if no subspace (or sublattice) of X is isomorphic
(i.e., linearly homeomorphic) to Co •

Given isomorphic normed spaces E and F, deE, F) denotes inf{11 Til '11 T-1il},
where the inf is taken over all invertible operators (= linear operators) from
E onto F. X has local unconditional structure (l.u.st.) provided X e= Ua Eoo
where the Ea's are finite dimensional subspaces of X forming an increasing
net when directed by inclusion, and E oo has a basis (eioo);~t) for which
sUPoo U(e;"')~~) = K < 00. LU(X) is the infimum of all such K, as (Eoo ) ranges
over all such decompositions of X. The concept of l.u.st. was introduced
in [8].

If X is a a-complete Banach lattice, then it is easy to show that for any
finite dimensional subspace E of X and E > 0, there are disjointly supported
vectors (Xi);~l in X (i.e., I Xi I /\ I Xj I = 0 for i ole j) and an operator
T: E -+ [Xi];~l so that II T - hI: < E. Since U(x;) = 1, a perturbation
argument yields that LU(X) = 1. Since y** is a a-complete Banach lattice
for any Banach lattice Y, it follows from the principle of local reflexitivity
[21] that LU(Y) = 1 for every Banach lattice Y.

X is said to be finitely representable in Y provided for all finite dimensional
subspaces E of X, inf{d(E, F): F r: Y} = 1. X is super-reflexive (cr. [14])
provided every space finitely represented in X is reflexive. Enflo [9] proved
that if X is super-reflexive, then X can be given an equivalent uniformly
convex norm.

X is said to contain lpn uniformly for all n provided there is a sequence
(En) of subspaces of X for which sUPn d(En , lpn) < 00. If the En's can be
chosen so that there are projections Pn from X onto En with sUPn II Pn II < 00,

then X is said to contain uniformly complemented l],n's for all n.
A basic sequence (en) is said to be A-equivalent to a basic sequence Un)

provided the map en -+ fn extends to an isomorphism T from the closed
linear span [en] of (en) onto Un] so that max{l, II Til} max{l, II T~lll} ~;::; A.

2. The Embedding Results and Related Topics

The proof that a Banach space with l.u.st. embeds in a good way into a
Banach lattice is modelled on the proof of Theorem 7. I in [20). One could
also give a proof using ultraproduct techniques (cf. [6]).

THEOREM 2.1. A Banach space X has l.u.st. if and only if there are a
Banach lattice L, A < 00, and a subspace Y of L which is isomorphic to X and
satisfies the following: Given any finite dimensional subspace E of L there is
an operator T = TE : E -+ Yfor which T IEnY = hM and II Til' II T-111 ~ A.

Proof The if part is very easy. Indeed, if F is a finite dimensional subspace
of Ythen since LU(L) = 1 we know that there is a finite dimensional subspace
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E of L with F ~ E and U(E) ~ 2. Then TE is a subspace of Y which contains
F and U(TE) ~ 21... Hence Y has J.u.st., whence X has l.u.st.

To prove the only if part, write X= U E" where the E~'s are finite
dimensional, directed by inclusion, and each E, has a basis (et)7l~) with
U(et) < I.. for each ex and for some 1... Let U;n) be Hahn-Banach extensions
of the functionals on Eo biorthogonal to (et) to elements of X*, and assume by
normalization that Ilk =~ I. Since U(e/) < 1.., there is a new norm I . ia

on Eo with respect to which (et) is unconditionally monotone and which
satisfies II x II ~ i x in I.. II X II for x E 1;, .

Let Z be the collection of all real valued functions on the unit ball Bx'

of X*. For each ex, define Ta : Z --> Eo by 7:, g = L~~~) g(k) e/,'. By passing
to a subnet of (Tn) (recall that the Eo's are directed by inclusion) we may
assume that Iii g II =c= lima I Ta g la exists in the extended reals for each g E Z.
Let L = {g E Z: g < oo}. It is routine to verify that L is a Banach
lattice under the pointwise order (of course, we identify g, h in L if
III g - h II = 0). Indeed, if i g I I h then I To g la <; i TJl 10 for each CY

since (en is unconditionally monotone with respect to I' I,; thus
Iii g Iii ~ h We omit the routine proof that L is complete.

For x E X let Jx E Z be defined by Jx(x*)'= x*(x)(x* E Bx'). If x E Eo
then for f3 > ex, II x Ii I T(JJx 113 <; 1..1 x II, hence I! x I!~; Jx I.. i~ x II
for x E X, whence J is an isomorphism of X into L.

Finally suppose E is a finite dimensional subspace of L. Then for large
ex, TalE is almost an isometry and TJx == x for x E E n JX as long as
En ;;;) J-1(E n JX). Thus Y =, JX satisfies the desired condition (set T, = JTa

for ex sufficiently large).

COROLLARY 2.2. Every Banach space X with J.u.st. is isomorphic to a
subspace Y of a Banach lattice L such that (a) L is finitely representable in Y;
(b) There exists a projection P on L * whose range is isomorphic to y* and
for which (l --- P) L * ==. Y'. Consequently, ij' X is complemented in X* * then X
is isomorphic to a complemented subspace oj'L.

Proof Direct the finite dimensional subspaces of L by inclusion and
consider the net {TE : E is a finite dimensional subspace of L}. By passing to
a subnet of this net we may assume that f(T1Jx converges for each fE L *
and x E L, say,f(TE) x ---+ (Pj)(x). One easily verifies that P is linear, PfE L *
for f E L *, P is bounded, and kernel P = y e . P is a projection
because (PPf)(x) = limE(Pf) TEx == limE limpf(TpTt.x). But for fixed E,
limpf(TpTE) x = f(Tex) (since TEE ~ F n Yeventually and TFIFnY = IFn !')
so (PPj)(x) = Pf(x) and P is a projection.

It is a well-known application of the Hahn-Banach theorem that the
conditions on P imply that PL * is isomorphic to Y*. Finally, if Q is a
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projection from y** onto Y, then (identifying y-t-L C L ** with Y**) we have
that QP~ is a projection of L onto Y.

Remark 2.3. Gordon and Lewis (12] define local unconditional structure
differently from us. A modification of the proofs of Theorem 2.1 and
Corollary 2.2 yields that X has local unconditional structure in their sense,
if and only if x** is complemented in a Banach lattice.

COROLLARY 2.4. Suppose X is complemented in a Banach lattice L and X
contains 100 " uniformly for all n. Then has l.u.st.

Proof Given a finite dimensional subspace E of X an integer n, there is
a subspace F of X with lie +fll ?c; Q Ii ell (e E E,fE F) and d(F, IJJ") ~ 2
(cf., e.g. Lemma 4.1 of [11]). Now if L == X EB Yand G is a finite dimensional
subspace of L, one can pick finite dimensional E ex, Hey with
GeE + H. By the remark at the beginning of the proof and the universality
of loon we can choose a subspace W of X, an isomorphism T from H into W
with Til = 1, Ii T-

1 Ii ~ 2, so that II e+ 11' II ??: ~·II e II for e E E and 11' E W.
Define T: E + H -+ X by T(e + h) = e + Th. Then TW'.+HlnK = hand
IT' il T-1 If is bounded independently of E and H. Thus by the easy
implication of Theorem 2.1, X has l.u.st.

Note that a particular case of Corollary 2.4 is that X EB Co has Lu.st. if
X is complemented in a Banach lattice.

Remark 2.5. The proof of Corollary 2.4 is very similar to Lindenstrauss
and Rosenthal's proof [21] that a complemented subspace of L p which is not
isomorphic to a Hilbert space is a !l'p space.

We wish to make some further comments on the problem whether every
complemented subspace of a Banach lattice has l.u.st. The natural approach
to the problem is the following: Given a complemented subspace X ofa lattice
L, renorm L with a new lattice norm so that the new norm is equivalent the
old norm on X and L under the new norm is finitely represented in X in a
good way. Although we are unable to find such a new norm, this approach
does give some information:

PROPOSITION 2.6. Assume X is complemented in a a-complete lattice
(L, II . [I). (i) If X does not contain loon uniformly for large n, then X is
complemented in a lattice which does not contain 100 " for large n. (ii) If X is
super-reflexive, then X is complemented in a super-reflexive lattice.

Proof Let P be a bounded projection of L onto X. In case (i),
define a seminorm III' Ilion L by III y III = sup{l! pz II: I z I ~; I y I}.
Since {O} U {y E L: Iii y Iii> O} is a a-complete sub1attice of L containing X,
we may and do assume that iii' III is a norm on L.
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For x EO X, II x II :S;; III x 1.1 'S; II P . II x II, so . Ii! is equivalent to il . Ii on X.
Obviously if .1', Z EO L with iy I : Z i, then II', .I' 1.1 :S;; Iii Z ii, hence the com­
pletion of (L, Iii' lID is a Banach lattice. We next observe that P is continuous
in the III . II' norm. Indeed, for .I' EO L, Py EO X, so iii Py II' II P II . II Py Ii
II P II . lilY Ii!, hence PI,: 'S; II P

To complete the proof we must show that (L, :11 . W does not contain
lac" uniformly for all 11. Now an extension by Maurey [25] of a theorem due
to Rosenthal [28] implies that there is p < OCJ and a positive constant A so
that maX<dl II L;~l EiXi II ?c '\(L Ii Xi 1,")1/)) for every sequence (X.J7~1 in X.
Suppose that (.1'1 , )'2 , ... , )'/..) are disjoint vectors in L, and I )'i I ?c : Zi i for
I :S;; i :S;; k.

For any choice (Ei);~l of signs, we have from the definition of iii' Iii that

But then

III t )'i III '
'~I

hence

This shows that there is a k so that no disjointly supported sequence of
vectors in (L, Iii' liD is 2-equivalent to the unit vector basis for la/'o By the
results of [15], there is an n so that if E is a subspace of (L, Iii' liD and E is
contained in a subspace of L which is spanned by a disjointly supported
sequence of vectors, then dee, loon) ?c 2. Now suppose E is a finite dimensional
subspace of L. Since (L, II . 10 is a-complete, the remarks in the introduction
yield that there is for each E > 0 an operator T from E into a subspace of L
spanned by a disjointly supported sequence so that II Te - e [I < Ell e II :S;;
EK 1:1 e III each e E E. (Kisjust the norm of the identity I: (E, III lID -+ (E, II ·ID.)
That is, III T - hili < EK. Letting E -+ 0, we have deE, loon) ?c 2.

We turn now to the proof of (ii). Since X* is complemented in the lattice
L *, X* is complemented in another lattice M which does not contain loon
uniformly for alln, hence X = X** is complemented in a a-complete lattice
(namely, M*, which does not contain uniformly complemented lIn's
for large 11. Thus without loss of generality, we may assume that L
does not contain uniformly complemented lIn's for large 11. Now define
a new norm III . ilion L as in the first part of the proof. Then (L, III . liD does
not contain loon's, uniformly for large 11. Now it is well-known (cf. e.g., the
proof of Proposition 11.6 in [IS]) that if (Yi)7~1 is a disjointly supported
sequence in a lattice which is A-equivalent to the unit vector basis for lIn, then
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[Yi] is A-complemented in the lattice. Hence there is an integer n so that no
length n disjointly supported sequence in (L, Ii . II) is 2-equivalent to the unit
vector basis for lIn. By Lemma III.1 of [15] we have that there is q > I so that
II L Yi II ~ 2(~~ II Yi Ilq)l/q for any disjointly supported sequence (yo) in L.
It then follows from the decomposition lemma for lattices * and the definition
of iii' !I that ii! L: Yi I!I ~ 2(L: I!! Yi !ilq)l/q for any disjointly supported sequence
(Yi) in L. Summarizing, we have that there is an m so that if (yJ7:1 is disjointly
supported in (L, !!I . II!), then (Yi);~l is not 2-equivalent to the unit vector
basis for It' or I","'. As in the proof of part (i), every finite dimensional
subspace of (L, ill' ill) is for each E > 0 E-isometric to a subspace of (L, II . !D
spanned by disjointly supported vectors so that the main result of [15]
implies that the completion of (L, I'i . ,I!) is super-reflexive.

Remark 2.7. The proof of (i) of Proposition 2.6 shows that if X is com­
plemented in a space with unconditional basis and X does not contain Ix> n

uniformly for large n, then X is complemented in a space with unconditional
basis which does not contain I",n uniformly for large n. Part (ii) of Propo­
sition 2.6 also generalizes to the unconditional basis case, but more work is
necessary because the conjugate space to a space with unconditional basis
need not have an unconditional basis. One need first to show that if X is
complemented in a space with unconditional basis, and 11 does not isomor­
phically embed into X, then X is complemented in a space with shrinking
unconditional basis. This assertion is proved in Theorem 3.3.

Remark 2.8. The hypothesis in Proposition 2.6 that L be a-complete
is superfluous. In the non a-complete case renorm L in the same way. The
proof of Proposition 2.6 shows that no disjointly supported sequence in
(L, i!1 . iO is equivalent to the unit vector basis of co' Thus the completion
of (L, . IiI) is a-complete by the remarks in the introduction and, by [30],
it is complemented in its second dual. Consequently, X is also complemented
in its second dual X**.

We do not know whether it is true that if X has I.u.st. then X* has I.u.st.
(Of course, this would follow if our main conjecture has an affirmative
answer). However, we can show that x** has I.u.st. whenever X does. (The
converse is obvious from the principle of local reflexivity, [21].)

We need a preliminary lemma which says that every Banach space is
locally complemented in its bidual. The motivation for the lemma is the proof
of the well-known fact that x* is norm one complemented in X**.l

LEMMA 2.9. Suppose XC Y C X** with dim Y/X < 00. Then for each
E 0, X is 3 + E - complemented in Y.

1 i.e., if 0 x<y+zwithy,z Othenx=cxl -!-x2 withO Xl yandO x 2 <z.
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Proof We can write Y*= XL + JX*, where J: X* -->- y* is the isometry
defined by (Jx*) y == y(x*). The projection Q from y* onto JX* perpen­
dicular to X-l has norm I, so II I y*- Q II 2. Since X-l is finite dimensional,
there is by Corollary 3.2 of [17] for each E > 0 a projection P on Y with
Ii P II ~C( 2 + E and p* y* X-l. Obviously (l - P) Y =~= x.

THEOREM 2.10. If Y has l.u.st., then y** has l.u.st.

Proof We can assume that Y is a subspace of a lattice L and there is a
I.. < CXJ so that Y, L, I.. satisfy the conclusion of Theorem 2.1.

We wish to show that y** in the lattice L ** satisfies the condition in
Theorem 2.1. So let H be a finite dimensional subspace of L **, and let E 0

be arbitrary. By replacing H with a larger finite dimensional subspace of
L**, we can assume by Lemma 2.9 and the fact that y** is ;\-complemented
in L that H A -+- Bi- C where A, B, C are finite dimensional subspaces
of Y, y** and L**, respectively, satisfying

(i) y + b! > (3 ~ E)-III y II (y r= Y, bE B),

(ii) y** + c! >. (,\ + E)-III y** I! (y** E Y**, C E C).

By (ii) and local reflexivity in L** (cf. [21]), there is an operator T: C -->- L
so that T T-l < 1 -I Eand

(iii) a + TC I' > (I.. + E)-II a ,I (a E A, C r= C).

We have from (ii) and the condition on Y, L that there is an operator
S:A+TC->-YwithliSII ;\+E, S·l l,andSIA I A •

Consider the operator T: H -->- y* defined by T(a + b + c)= a ~- b + STC

(a E A, b E B, C E C). Obviously TiHnl**== IHnY ** . Also it is easy to check that
Ii Til '11 T-lil < Mfor some constant M M(;\, E). To see this, note that from
(i) and (ii) we have a positive constant K (with K (3 + E)-l(;\ + I E)-I)
so that

(iv) K maxClI a I, 'I b e J) a I- h + C I: < 3 max(11 a Ii, ii b Ii, i C 1)
(a E A, b E B, C E C).

On the other hand, we have from (i) that

il a + h + STC Ii (4 + E)-II h I, and I: a + b + STC II ? (3 + E)-III a + STC

But from (iii) and the condition on S it follows that II a + STC II
(4 + E)-l(;\ +- E)--l max(ll a ii, II STC il). Since II ST ,II (ST)-lII (I.. + E)(l E),
we get a positive constant Kl (actually K l (4+- E)-I(;\ + E)-2(1:Ej-lj
so that

(vj
max(1 a

K l max(1 a
b , el).

h lei,) - ! a h + STC
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Of course, (iv) and (v) yield that T Ilil T~l] < 111 for some constant
M = M(K, K 1 , ,\) (in fact, M :Cc; 9('\ ,- E)(l + E) K~lK"ll).

3. OTHER EMBEDDING THEOREMS

Our next embedding result is an immediate application of the factorization
theorem of [7] and a result of Abramovich's [I]. The unconditional basis
case answers in the affirmative a question of Bessaga and Pelczynski [4].

THEOREM 3.1. Assume that X has an unconditional basis (respecticely, X
is a a-complete and a-order continuous Banach lattice) and Z is a reflexive
subspace ofX. Then Z isomorphically embeds into a reflexive space Y so that Y
has an unconditional basis (respectively, Y is a Banach lattice).

Proof Let Wo = {x EX: :Jz E Z with " z I and I x I z I}. By the
main result of [I], Wo is a weakly compact set, hence so is H/ = conv Wo .

Obviously if x E X and I x I :c;; I It' I for some x E W, then x E W. Thus if we
apply the factorization process of Lemma I in [7] to I-V, we get a space Y
which has an unconditional basis (respectively, which is a Banach lattice).
Y is reflexive since W is weakly compact and Z isomorphically embeds into
Y since W contains the unit ball of Z.

We wish to show next that if Z does not contain an isomorph of /1 and Z
is a subspace of a Banach space which has an unconditional basis,. then Z
is isomorphic to a subspace of a Banach space which has a shrinking uncon­
ditional basis. In preparation for this, we need a variation of the result of
Abramovich used in the proof of Theorem 3.1. Let us recall that a subset
A of Z is said to be weak* sequentially compact provided thate very sequence
in A has a weakly Cauchy subsequence. It is well-known that if V is a bounded
subset of a space X which has an unconditional basis and V is not weak*
sequentially compact, then V contains a sequence which is equivalent to the
unit vector basis of 11 . (Recently Rosenthal [29] has shown that the condition
that X have an unconditional basis is superfluous.)

LEMMA 3.2. If X is a space with an unconditional basis and V is a weak*
sequentially compact subset of X, then so is the closed convex hull W of the
set VI = {x E X: I x I: v : jor some v E V}.

Proof If Wis not weak* sequentiaIly compact, then by the above remarks
there is a sequence (wn) in W which is equivalent to the unit vector basis
of 11 • Clearly we may assume that the supports of the Wn are finite and disjoint.

LetF E X* be such that F(wn ) > I for all n. Since F(wn ) :S;; sup{F(x): x E V'
and supp x C supp wn }, there are for each n a Vn E V and a function ,\n

defined on the set of indices of the basis so that: An i'C;; I, supp An C supp It'n ,
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and 1 = F(ll.n . Vn) = (An' F)(vn). (The dot denotes coordinatewise multi­
plication.) (An' F) is equivalent to the unit vector basis of Co since
II LnEA An . FI( II F for any set A of indices and inf An' F O. In
particular, the series LnE.1 An . F converges weak * in x* for any set A of
indices.

By hypothesis on V, there is a weakly Cauchy subsequence (Vn.) of (v,,).
This is absurd, since C ~c L:l ( -I)i An F n satisfies C(vn.) c-~ (-I):,

't , l

THEOREM 3.3. Suppose T: Z ---+ X is an operator, T(Ball Z) is weak*
sequentially compact in X, and X has an unconditional basis. Then there is a
space Y with shrinking unconditional basis and operators A: Z ---+ Y and
B: Y ---+ X which sati~fy BA ~~ T. Hence if T is an isomorphic embedding,
then so is A, and if also TZ is complemented in X then AZ is complemented
in Y. Finally, if T is weaklv compact, then Y is reflexive.

Proof We again use the factorization technique in Lemma 1 of [7] and
follow the notation used in [7]. As in Theorem 3.1, let Wbe the closed convex
hull of the set {x c= X: [xi: Tz I for some z E Ball(Z)}. The factorization
process of Lemma 1 yields the space Y. Y has an unconditional basis by part
(x) of Lemma 1 which is shrinking by part (ix). The complementation follows
from (viii) of this lemma. By Abramovich's result [I] W is weakly compact if
T is a weakly compact operator, so reflexivity of Y follows from part (iv) of
the lemma.

Remark 3.4. We ask whether there is a dual version of Theorem 3.2,
namely, that if Co does not isomorphically embed into X and X is a subspace
of a space with unconditional basis, then is X a subspace of a space which
has a boundedly complete unconditional basis.

4. SUBSPACES OF LATTICES WITH UNCONDITIONAL BASES

The main theorem we prove in this section is Theorem 4.1.

THEOREM 4.1. Let L be a a-complete and a-order continuous Banach
lattice. Suppose X is a subspace of L. Either X is isomorphic to a subspace of
LlfL) for some measure fL or there is a sequence (x;) of unit vectors in X and a
disjointly supported sequence (e ,) in L with II Xi - ei Ii ---+ O. Consequently,
every subspace of L contains an unconditional basic sequence.

Proof If every separable subspace of X is isomorphic to a subspace of
Ll(v) for some measure v, then X embeds isomorphically into Ll(fL) for some
measure fL (cf. Proposition 7.1 in [20]). Thus we may assume that X is
separable. But then X is contained in a separable a-complete and a-order
continuous sublattice of L, so we may assume L is separable.
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It has been shown in [30] that there is a measure space (p" S, L), a linear
(not necessarily closed) sublattice Y of L I (p,) and a norm Ii . lion Y so that
(L, II . ID is isometric and lattice isomorphic to (Y, II . ID and JIY I dll II Y [I

for all Y EO Y. (Of course, the ordering on L I (Il) and Y is pointwise a.e. with
respect to p,.) For the sake of completeness we reproduce here a neat proof
of this assertion due to Meyer-Nieberg [27]: Since L is separable there is a
strictly positive functional x* EO L * of norm one (i.e., x*(x) > 0 for each
o < x EO L). Define on L by II x = x*(j x I). It is clear that the com­
pletion of (L, Iii' liD is an abstract L-space and thus is isometric to Lj(p,)

for some measure p, by the Kakutani representation theorem [19].
We also use a less obvious fact about this construction (Cf. Lemma 1.1

of [17]): Y is an order ideal in L I (p,); i.e., Y E Y, Z E L I (p.,), and I z I Y I
imply that z EO Y.

From now on we regard L as an order ideal in L I (p,) and assume
JIY I dp, ~ II Y II for Y E L. Since L is dense in L I (p,), there is a norm one
vector f EO L with f(t) > 0 for almost all t. Thus by mapping L I (p,) into
LI (jdp,) (by Y --+ yi/), we can assume without loss of generality that 1 EO Y
and in fact il ] II = 1. We now use the well known technique of Kadec-
Pelczynski [18]. For yEO Land £ > 0, Jet A(y, £) ,= {t EO S: Iy(t) £ I' y
Let M(£) = {y EO L: p,(A(y, E)) ~ £}. Observe that if y E M(£), then
J Iy I dp, ~ JACY.E) Iy Idp, ~ £211 y II. Thus if there is an £ > 0 so that
XC: M(£), then X is isomorphic to a subspace of L I (p,).

Tn the other case, we can pick a sequence (Yn) in X with II Yn II == ] and
Yn tf M(2-n). For m > 11, Jet An,m =~ A(Yn, 2-n)\(U~~mA(Yk, 2--1

,). For fixed
11, p'(A n •m) --+ p'[A(Yn, 2-n)] as m --+ 00, hence II XAn.mYn ~ XA(Yn. 2-n))'n II -+ 0
as m --+ 00 by the order continuity of the norm. (Note that XA )'n and
XA(un. 2-nlYn are in Ybecause Yis an order ideal in L I(p,)). Thus we C~'I~ pass to
a subsequence (Yn,) of (Yn) and find a pairwise disjoint sequence (Ai) of p,
measurable sets with Ai C A(Yn

i
, 2-n;) so that

But then

Therefore Xi = Yn, ei = XA,Yn. have the desired properties.
For the final statement, we 'use' the deep result of Rosenthal [28] that every

subspace of L I (p,) contains an unconditional basic sequence in the case where
the subspace X of L embeds in L I (p,), and a standard stability result otherwise.

As an immediate corollary of Theorems 4.1 and 2.1 we have
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COROLLARY 4.2. If X has I.u.st. and X does not contain ln ll uniformly for
large n, then every subspace of X contains an unconditional basic sequence.

Proof By Theorem 2.1, X is isomorphic to a su bspace of a Banach lattice
which does not contain ly~iI uniformly for large n; in particular, Co is not iso­
morphic to a subspace of L. Therefore, as mentioned in the introduction,
L is a-complete and a-order continuous, so Theorem 4.1 applies.

Remark 4.3. If X is a complemented subspace of a reflexive lattice L,
and X is not isomorphic to a Hilbert space, then at least one of the spaces
X or x* contains a basic sequence equivalent to a disjointly supported
sequence in L (respectively, L *). Indeed, since X is complemented in L,
I. * contains x* isomorphically, and both Land L * are a-complete and
a-order continuous, so if the desired conclusion is false both X and X*
are isomorphic to subspaces of L1(fL) for some measure fL. But then by a
result of Grothendieck [13. p. 66] (cL also [20)), X is isomorphic to a Hilbert
space.

Remark 4.4. [t may be that if X is complemented in a reflexive lattice L.
then either X is isomorphic to a Hilbert space or X contains a basic sequence
which is equivalent to a disjointly supported sequence in L. We can prove
this in the case where L is uniformly convex and X is norm one complemented
in L.

5. SUBSPACES OF LORENTZ FUNCTION SPACES

Given a nonincreasing function W on (0, I] with J~ W(t) dt ~~. I;
WE/: Ln[O, 1]; W(l) > 0 and I p < 00, let A( W, p) be the Lorentz
function space of all measurable functions f on [0, 1] for which
[[fll = (J~f*(t)" W(t) dt)l/l' < rfJ. Here f* is the decreasing rearrangement
of If. J1( W, p) is a a-complete and a-order continuous Banach lattice which
is reflexive if and only if p I (cL [23)).

For our purpose there is a more convenient way of computing the norm
in J1(W,p). Note that for fE"I(W,p), i'fil = sup(J~ If(t))!Ji W(t)dt)l/l)
where the sup is taken over all measure preserving automorphisms T from
[0, I] onto [0, I].

The first result we prove concerning the spaces /ie W, p) is

THEOREM 5.1. Let (fn) be a disjointly supported sequence of norm one
vectors in J1( W, p) and let E > O. Then (fn) has a subsequence which is (1 - E)-I

equivalent to the unit vector basis for lp and which spans a (l - E)-l-comple­
mented subspace of J1(W, pl.
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Prool For A a measurable subset of [0, 1], 1 A I denotes the Lebesgue
measure of A. Let An = suppfn and choose Tn: [0, I An ]] -+ An measure
preserving so that J~ Ifn(T,,(t))!1' W(t) dt = I. Choose En > 0 SO that

• A II "lfn(Tn(t))jJ'W(t)dt (I-E)"
.., Ell

and assume by passing to a subsequence of (f~) that En > i An+l I. We claim
that (In) is (1 - E)-I-equivalent to the unit vector basis of I" and LI~] is
(1 - E)-I-complemented in il(W, p).

Let us first observe that the inequality

(5.2)

for an arbitrary sequence (an) of scalars follows from the disjointness of the
supports of the /,,'s. Indeed, given a measure preserving automorphism
Ton [0, 1], we have

( II anfnHt)f Wet) dt

= I I an II) rl
If;,(T(t))jP Wet) dt c:;; I i an I" IIJ~ II" c:;; I i an !I'.

'0

On the other hand, given (an), let T be any measure preserving transfor­
mation on [0, 1] for which T = Tn on [En,! An I] for all n. Then

( II anfn(T(t)f Wet) dt

~ IA r

I JI n I an? Ifn(Tn(t))IP W(t)dt
n En

;::0: I i an 11' (1 - E)1J ): (I ]an 11')(1 - E)1'.
n

Of course, this inequality combines with (5.2) to yield that (In) is (1 - E)-I_
equivalent to the unit vector basis for I" .

The proof that Un] is (1 - E)-I-complemented in A(W, p) is based on a
proof of Casazza and Lin [5] for an analogous fact concerning Lorentz
sequence spaces.

Define functionals Fn on A(W, p) by
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where T is the previously defined automorphism of [0, 1]. Obviously

and for 11 #- m.

Observe that forfE J1(W, p),

n

I fJ Ani if~(T(t»)jP Wet) dtJ· _.1'

LEn

X ltAnl
if(T(t»ilf~(T(t)P'-l W(t)dtr

:'( lIrAnl

If(T(t»i 1J W(t)dtJl(A"llf~(T(t»iP W(t)dtl1

(by Holder's inequality)

If I f(T(t)' l' Wet) dtJ

= (1-- E)-1J li/W'.

Thus Fn E A( W, p)* and by (5.2) Pl = L: Fn(f) In is a projection from
A(W, p) onto [In] with II P'I :'( (I - E)-l.

Remark 5.3. Suppose Un) is a disjointly supported seq uence of unit
vectors in J1( W, p), An = supp fr" and Tn: [0, 1 An !J -+ An is measure
preserving with

I
·IA"I

Ifn(T(t»I1J W(t)dt = 1.
'0

We can choose by induction a decreasing sequence (En) of positive numbers
and an increasing sequence I = k 1 < k 2 < of positive integers to satisfy
for each f E [/;]7~1 , there is a measure preserving mapping T:

En> I I Ai I.
i=kn +1

(5.5)

Let En = L[;]:~t-l. The proof of Theorem 5.1 shows that for gn E E2n
(or gn E E2n- 1),
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Thus (E2n) and (E2n- 1) are both Ip decompositions. But since (En) is an
unconditional decomposition, we have that (En) is an Ip decomposition. That
is, Un] is isomorphic to Ct En)l .

11

Remark 5.6. It follows from thefact that W(I) > °thatJ1( W, p) ~ Lv[O, 1]
and the injection is continuous. The proofs of Theorems 4.1 and 5.1 thus show
that a subspace of A(W, p) either embeds isomorphically into Lv[O, 1] or
contains a complemented subspace isomorphic to Iv .

Remark 5.7. Ifp ~ 2, itfollows from Remark 5.6 thatA(W, p) ~ L 2[0, 1]
and the injection is continuous. Thus the technique of Kadec-Pelczynski [18]
and Theorem 5.1 yield that if X is a subspace of A( W, p) (p ~ 2) then either
X is isomorphic to a Hilbert space and X is complemented in A(W, p), or
X contains a subspace 1 + E-isometric to Iv and 1 + E-complemented in
A(W, p). It seems to us that the technique in [16] can be used to show that
if X is a subspace of A( W, p) (p ~ 2) and no subspace of X is isomorphic
to 12 , then X is isomorphic to a subspace of (t En)l for some sequence

11

(En) of finite dimensional subspaces of A( W, p). However, we did not check
this out.

The next result is that a complemented subspace of A( W, p) for 1 < p < 2
is either isomorphic to a Hilbert space or contains a complemented subspace
isomorphic to Iv . In the case of Lv with 1 < P < 2, Kadec and Pelczynski
[18] pointed out that this result follows by duality from their investigation
of L r with 2 < r < 00. Since A(W, p)* is not necessarily a Lorentz function
space, a different approach is required here.

We use a simple fact concerning "diagonals" of operators. The fact can
be proved as in [22, p. 23], or a proof using Rademacher functions can be
given along the lines of the proof of Lemma 2 in [16].

Fact 5.8. Suppose X has an unconditional basis (en), T: X --..11(W,p)
is an operator, and (En) is a pairwise disjoint sequence of measurable subsets
of [0, I]. Let

Then D maps X into A(W,p) and II D II < II Til U(en).

THEOREM 5.9. Suppose X is a complemented subspace of A(W, p)
(I :(; p < 00). If X is not isomorphic to a Hilbert space, then X has a comple­
mented subspace which is isomorphic to Iv .

Proof First assume p > 1 and let P be a projection from A( W, p) onto X.
If the conclusion is false, then by Theorems 5.1, 4.1, Remark 4.3, and the
reflexivity of A(W, p) there is a sequence (Fn) of norm one functionals in
P*A(W, p)* and a pairwise disjoint sequence An of measurable subsets of
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[0,1] which satisfy Fn - XA/,n!1 < E (E ° is to be specified later).
We identify A(W, p)* with a space of measurable functions on [0,1], so that
G(f), f~G(t)f(t)dt for GEA(W,p)* andfE.1(W,p). Pick gnE.1(W,p)

with suppg" r;: An, I! gn I, and (XI Fn) g" 1 E-

In view of Theorem 5. I, we can as~~ume by passing to a subsequence
of (gn) that (g,,) is equivalent to the unit vector basis of IIi' Thus
gn ~~ °weakly, hence Pgn ---+ 0 weakly. But observe that inf!! Pgn 0.
Indeed, :! Pg" XA"Fn(PgII) P*(XI/,,,)( g,,) and P*x1f" F"
Ii P*XA Fn P*Fn I! 'S; p* Ii!! XA Fn ~. F" So P*XA F" X1 F"
E(!! p* Ii + I). Hence JP*X4,/n XlnFn) g" ! < E( p"! + I) "whence
(P*XA Fn ) g" > (l -- E) - E(! P ! I), which is positive if E 0 is suffi­
ciently" small.

By Remark 5.6, we can assume that the LAO, I] norm is equivalent to
the A( W, p) norm on X and hence X is isomorphic to a subspace of L,JO, I].
Since LAO, I] has an unconditional basis (the Haar functions), some sub­
sequence of (Pg n ) is unconditionally basic by the results of [3]. So for
simplicity of notation, assume that (Pg,,) is unconditionally basic. By Fact 5.8,
the function D: [Pg,,]·" A( W, p) defined by D(LX"Pg,,) L 'xn(Pg n) XA"
is a bounded operator. Nowll(Pg,,) X1 F,,[(Pgr,} Xl ] P*(XA F,,) g" >
(I - E) - E(! P!i + I), so by Theore;;' 5.1 we can ass'~me by pa~sing to a
subsequence of ( g,,) that ((PgrJ X1 ) is equivalent to the unit vector basis of I" .

The arguments in the preceding paragraph show that the linear extension
of the map g" ---+ (Pg n ) XA is essentially the identity on l.p, hence the linear
extension of the map g" ---+"Pg" is an isomorphism, whence (Pg n ) is equivalent
to the unit vector basis of I" . Recalling that X is closed in L 1i [0, I] we have
that [Pgn] is closed in Lp[O, I] and (PgJ is, in Lp[O, I], equivalent to the unit
vector basis of Ip • Thus by a result of Enflo and Rosenthal [10], there is
a subsequence (Pgn) of (Pg,,) and a projection Q from L 1,[0, I] onto [Pg" J
Of course, the restriction of Q to X is a projection of X onto a subspace or'X
isomorphic to I p • This completes the proof of the case when p I.

Assume now that p I. In this case the only problem occurs when X is
closed in L1 [0, I]. If X is not reflexive, then X contains a complemented
subspace isomorphic to 11 by a theorem of Kadec-Pelczynski [18], so we
assume that X is reflexive. Since A( W, I) * is not a-order continuous, we
cannot apply Theorem 4.1 and Remark 4.3 directly. However, we can get
around this problem by using an argument from [30]: Since X is reflexive,
if FE A(W, p)* and (An) is a disjoint sequence of measurable subsets of
[0, I], then XA Fix I! ._~ 0. Indeed, if qX.l"F Ii 1) °for infinitely many n
(for n E A, say)" then (XA F)nEA is equivalent to the unit vector basis of Co

because it is an unconditional basic sequence and 'i LnEB XA F os; j' F II for
all subsets B of A. The restriction operator LnEA OI.nXAnF ---+ I:ncA CinXA"F!x is
compact (as is any bounded linear operator from Co into a reflexive space),
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hence II XAnFIX II --+ 0. This fact and the proof of Theorem 4.1 yield that there
is a sequence (Fn ) of norm one functionals in P*A(W, p)* and a
pairwise disjoint sequence (ArJ of measurable subsets of [0, 1] so that
inf II XA Fnl x Ii :> 0. One can choose a sequence In of norm one elements of
X so that lim inf Fn(XA In) = Jim inf(XA Fn)ln :> 0. We can assume, by
passing to a subsequen;e of (j~), that J: -->- I weakly. Now (XA Fn)ix ->- °
weak* since (An) is pairwise di~joint and X is reflexive, so (XA Fn)! --+ °and
by replacing (j~) with a subsequence of (j~ - 1), we may assu~e thatln --+ 0
weakly. Since X is isomorphic to a subspace of LI[O, I] and is reflexive, X
is isomorphic to a subspace of Lr[O, 1] for some 1 < r 2 by a theorem of
Rosenthal's [28]. Thus, as in the proof of the p :> 1 case, we can assume that
Un) is unconditionally basic. Hence by Fact 5.8, the map L cxnln --+ L, cxnxAnln
is a bounded linear operator from U;,J to [XAJn]' Now lim inf II XAJn ii ;;;
lim inf Fn(XA In) :> 0, so by Theorem 5.1, some subsequence of (XA J~)

is equivalent"to the unit vector basis of 11 . Since Un] is reflexive, this is a
contradiction. This completes the proof.
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